Research

The experiential model and the engineering design process are two foundations of the 4-H robotics program. However, we are continuously looking for ways to improve and help Mississippi’s youth achieve computer science skills. Below are some of resources we are listening to and reading that guide our thinking. Please check them out for yourself and let us know your thoughts when we do our next needs assessment.

References

  • Adams, B., & Keene, J. F. (2005). Traction and ballasting experiments using LEGO® Mindstorms. Proceedings of the 2005 American Society for Engineering Education Annual Conference & Exposition, Portland, OR. Retrieved from http://www.ni.com/white-paper/4934/en
  • Aranibar, D., Gurgel,V., Santos, M., Araujo, G. R., Roza,V. C., Naschimento, R. A.,… Goncalves, L. M. G. (2006). RoboEduc: A software for teaching robotics to technological excluded children using LEGO® prototypes. 3rd IEEE Latin American Robotics Symposium LARS06, Symposium conducted at the meeting of the Robotics and Automation Society, Chile Section. Santiago, Chile.
  • Atmatzidou, S., Markelis, I., & Demetriadis, S. (2008). The use of LEGO® Mindstorms in elementary and secondary education: Game as a way of triggering learning. Workshop. Proceedings of International Conference on Simulation, Modeling and Programming for Autonomous Robots, Venice, Italy, pp. 22–30. Retrieved from http://monicareggiani.net/simpar2008/TeachingWithRobotics/atmatzidou_et_al.pdf 193
  • Barker, B. (2011). No robotics in school? 4-H can help. Learning & Leading With Technology, 39(3), 26-29. Retrieved from http://www.learningandleading-digital.com/learning_leading/201111#pg1
  • Barker, B. (2007). Stakeholders’ input on 4-H science and technology program areas: An exploratory study. Journal of Extension [Online], 45(2), Article 4RIB6. Retrieved from http://www.joe.org/joe/2007april/rb6.php
  • Barker, B. E. (2008). Examining 4-H robotics in the learning of science, engineering and technology topics and the related student attitudes. Journal of Youth Development: Bridging Research and Practice, 2(3), 7–18.
  • Barker, B. S. (2007). Stakeholders' input on 4-H science and technology program areas: An exploratory study. Journal of Extension, 45(2). Retrieved from http://www.joe.org/joe/2007april/rb6.php
  • Barker, B. S., & Ansorge, J. (2006). Using robotics as an educational tool in 4-H. Joournal of Extension(44). Retrieved from http://www.joe.org/joe/2006october/iw6.php
  • Barker, B., Nugent, G., & Grandgenett, N. (2008). Examining 4-H robotics and geospational technologies in the learning of science, technology, engineering, and mathematics topics. Journal of Extension, 46(3). Retrieved from http://www.joe.org/joe/2008june/rb7.php
  • Bourdeau, V. D., & Taylor E. (2007). Creating a 4-H technology camp for middle school youth. Journal of Extension, 45(5), Article 5IAW4. Retrieved from http://www.joe.org/joe/2007october/iw4.php
  • Brandt, A., & Colton, M. (2008). Toys in the classroom: LEGO® Mindstorms as an educational haptics platform. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, 389–395. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4479982
  • Church, W., Ford, T., Perova, N., & Rogers, C. (2010). Physics with robotics: Using LEGO® Mindstorms in high school education. Symposium conducted at the Association for the Advancement of Artificial Intelligence Spring Symposium, Palo Alto, CA.
  • Diem, K. (2001). Learn by doing the 4H way: Putting a slogan into practice. Rutgers Cooperative Extension Service, New Jersey Agricultural Experiment Station. Retrieved from http://www.njaes.rutgers.edu/pubs/pdfs/4h/e148/447-454.pdf
  • Elmore, B., & Seiler, E. (2008). Using LEGO® robotics for K-12 engineering outreach. Proceedings of the ASEE Southeast Section Conference, Memphis, TN.
  • Erwin, B., Cyr, M., & Rogers, C., (2000). LEGO® engineer and RoboLab: Teaching engineering with LabView from kindergarten to graduate school. International Journal of Engineering Education, 16(3), 181–192.
  • Gabauer, D., Bayse, T., Terpenny, J., & Goff, R. (2007). Improving undergraduate engineering design instruction through lessons learned mentoring FIRST LEGO® League. Proceedings of 2007 Americian Society for Engineering Education Annual Conference & Exposition. Honolulu, HI. Retrieved from: http://icee.usm.edu/icee/conferences/asee2007/papers/2175_IMPROVING_UNDERGRADUATE_ENGINEERING_DESI.pdf
  • Grega, W., & Pilat, A. (2008). Real-time control teaching using LEGO® MINDSTORMS NXT robot. Proceedings of RTS’08 – International Conference on Computer Science and Information Technology,Wisla, Poland.
  • Habib, M. A. (2012). Robotics competitions: An overview of FIRST© Events and VEX© competitions. Journal of Extension, 50(3). Retrieved from http://www.joe.org/joe/2012june/iw3.php
  • Habib, M. A. (2012). Starting a robotics program in your county. Journal of Extension, 50(2). Retrieved from http://www.joe.org/joe/2012april/iw6.php
  • Hirst, A., Johnson, J., Petre, M., Price, B. A., & Richards, M. (2003). What is the best programming environment/language for teaching robotics using LEGO® Mindstorms? Artificial Life and Robotics, 7(3), 124–131. Retrieved from http://mcs.open.ac.uk/bp5/papers/arob2002/2002-arob-hirst.pdf
  • Jewel, S. L. (2011). The effects of the NXT robotics curriculum on high school students’ attitudes in science based on grade, gender, and ethnicity. (Doctoral dissertation, Liberty University). Retrieved from http://digitalcommons.liberty.edu/cgi/viewcontent.cgi?article=1470&context=doctoral
  • Langer, C., & Strothotte, C. (2007). The benefits of integrating LEGO® Mindstorms into design education. Course Media Systems. International conference on engineering and product design education. September 13–14, 2007. Northumbria University, Newcastle Upon Tyne, United Kingdom.
  • Lau, K., Tan, H., Erwin, B., & Petrovic, P. (1999). Creative learning in school with LEGO® progammable robotics products. Proceedings of the 29th ASEE/IEEE Frontiers in Education Conference, 124–126. San Juan, Puerto Rico. Retrieved from http://fie-conference.org/fie99/wsdindex.html
  • Lindh, J., & Hogersson, T. (2007). Does LEGO® training stimulate pupils’ ability to solve logical problems? Computers & Education, 49(4), pp. 1097–1111. Retrieved from ERIC database. (EJ773933).
  • Mauch, E. (2000, March/April). Using technological innovation to improve the problem-solving skills of middle school students: Educators’ experiences with the LEGO® Mindstorms robotic invention system. The Clearing House, 74(4) 211-214. Retrieved from http://home.wlu.edu/~kuehnerj/cv/clearinghouse_2001.pdf
  • McNeill, B., Jirik, P., & Rugg, B. (2014). 4-H and aquatic robotics. Journal of Extension, 52(6). Retrieved from http://www.joe.org/joe/2014december/iw7.php
  • McWhorter, W., & O’Conner, B. (2009). Do LEGO® Mindstorms motivate students in CS1? SIGCSE ’09. Proceedings of the 40th ACM Technical Symposium on Computer Science Education, 41(1), 438–442. doi: 10.1145/1508865.1509019
  • Milton, E., Rogers, C., & Portsmore, M. (2002). Gender differences in confidence levels, group interactions, and feelings about competition in an introductory robotics course. Paper presented at the ASEE/IEEE Frontiers in Education Conference (Session F4C), Boston, MA.
  • Nugent, G., Barker, B., Grandgenett, N., & Adamchuk, V. (2009). The use of digital manipulatives in K-12: Robotics, GPS/GIS and programming. Paper presented at the 39th ASEE/IEEE Frontiers in Education Conference, San Antonio, TX.
  • Portz, S. (2002). LEGO® League: Bringing robotics training to your middle school. Tech Directions, 61(10), 17–19.
  • Sherrard, A., & Rhodes, A. (2014). Comparison of the LEGO Mindstorms NXT and EV3 Robotics Education Platform. Journal of Extension, 52(5). Retrieved from http://www.joe.org/joe/2014october/tt9.php
  • Swartz, T. (2007). Integrating LEGO® Mindstorms robotics into the classroom. Emporia, KS: Emporia State University.
  • Wessel, T., & Wessel, M. (1982). 4-H: An American idea 1900-1980. Chevy Chase, MD: National 4-H Council.

Education

  • America’s Promise Alliance. (2006). Every child, every promise: Turning failure into action. Alexandria, VA: Author. Retrieved from http://americaspromise.org/Resources/Partner-Resources/Every-Child-Every-Promise.aspx#.UQwV6yKF9Y4
  • Atkinson, R. D., & Andes, S. (2010). The 2010 State New Economy Index: Benchmarking Economic Transformation in the States. The Information Technology & Innovation Foundation. Ewing Marion Kauffman Foundation. Retrieved from http://www.kauffman.org/uploadedfiles/snei_2010_report.pdf
  • Beghetto, R. (2004). Toward a more complete picture of student learning: Assessing students’ motivational beliefs. Practical Assessment, Research & Evaluation, 9(15). Retrieved from http://pareonline.net/getvn.asp?v=9&n=15.
  • Berson, I., & Berson, M. (2010). High tech tots: Childhood in a digital world. Charlotte, NC: Information Age Publishing.
  • Crane, T., Wilson, J., Maurizio, A., Bealkowski, S., Bruett, K., Couch, J., et al. (2003). Learning for the 21st Century: A report and MILE guide for 21st Century skills. Washington, DC: Partnerships for 21st Century Skills. Retrieved from ERIC database. (ED480035)
  • Davis, C.S., & Rosser, S. (1996). Program and curricular interventions. In The equity equation: Fostering the advancement of women in the sciences, mathematics, and engineering. San Francisco, CA: Jossey-Bass.
  • Doppelt, Y. & Barak, M. (2002). Pupils identify key aspects and outcomes of a technological learning environment. The Journal of Technology Studies, 28(1) 22-28.
  • Dimitri, C., Effland, A., & Conklin, N. (2005). The 20th Century transformation of U.S. agriculture and farm policy. In Economic Information Bulletin Number 3. Washington, DC: Economic Research Service. Retrieved from http://www.ers.usda.gov/publications/eib-economic-information-bulletin/eib3.aspx
  • Genalo, L. (2007). Trends in pre-college (K-12) engineering educators. The International Journal of Engineering Education, 25(3), 841–1049. 199
  • Gottfried, A. E., Marcoulides, G. A., Gottfried, A. W., & Oliver, P. H. (2009). A latent curve model of parental motivational practices and developmental decline in math and science academic intrinsic motivation. Journal of Educational Psychology, 101(3), 729–739.
  • Hardwick, P., Wiseman, M., Brook, R., Crawford, W., Lewis, G., Litchliter, D., …& Yelverton, J. L. (2005). Bringing broadband to rural Mississippi Appalachia: An examination of current environment, issues and alternatives. The John C. Stennis Institute for Government, Mississippi State, MS.
  • Higashi, R., Abromovich, S., Shoop, R., & Schunn, C. (2012). The role of badges in the student science network. Proceedings of 2012 Games + Learning + Society 200 Conference, Madison, WI. Retrieved from http://www.ri.cmu.edu/publication_view.html?pub_id=7352
  • Jamison, K. (2008, December). Growing a new crop of engineers. Mechanical Engineering Magazine 130(12). Retrieved from http://memagazine.asme.org/Articles/2008/December/Growing_New_Crop_Engineers.cfm
  • Javonic, J., & Dreves, C. (1998). Students’ science attitude in the performance-based classroom: Did we close the gender gap? Journal of Women and Minorities in Science and Engineering, 4(4), 235-248. 201
  • Jones, R., Fox, C., & Levin, D. (2011). State technology leadership essential for 21st century learning. State Educational Technology Directors Association. Retrieved from States Helping States website: http://www.setda.org/web/guest/2011nationaltrends
  • Kelsey, K., & Mariger, S. (2003). A survey-based model for collecting stakeholder input at a land-grant university. Journal of Extension, 41(5). Retrieved from http://www.joe.org/joe/2003october/a3.php
  • Leach, J., & Paulsen, A. (1999). Practical work in science education: Recent research studies. Frederiksberg, Denmark: Roskilde University Press.
  • Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. Cambridge, MA: MIT Press.
  • Mississippi Department of Education. (2006). Redesigning education for the 21st century workforce: A plan for Mississippi. Jackson, MS: Retrieved from http://www.mde.k12.ms.us/extrel/Redesign_Booklet.pdf
  • Mississippi Farm Bureau Federation. (2012). Programs: Ag in the classroom. Retrieved from http://www.msfb.com/%5CPrograms%5Caitc.aspx
  • National 4-H Council. (2008, Fall). 4-H: The power of youth: SET edition. Chevy Chase, MD. 206
  • National Science Foundation, National Science Board. (2010). Preparing the next generation of STEM innovators: Identifying and developing our nation’s human capitol. Retrieved from http://www.nsf.gov/nsb/publications/2010/nsb1033.pdf
  • National Strategic Directions Team. (2001). The power of youth in a changing world: Jump at the chance! Washington, DC: United States Department of Agriculture. Retrieved from http://www.national4-hheadquarters.gov/strategic.pdf
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York, NY: BasicBooks.
  • Papert, S., & Harel, I. (1991). Situating constructionism. In S. Papert & I. Harel (Eds.), Constructionism (pp. 1-11). Norwood, NJ: Ablex Publishing.
  • Patrick, H., & Yoon, C. (2004). Early adolescents’ motivation during science investigation. The Journal of Education Research, 97(6), 319–328. 207
  • Resnick, M. (2013). Mitch Resnick directs the Lifelong Kindergarten group at MIT Media Lab, dedicated to helping kids of all ages tinker and experiment with design. Retrieved from Ted Talks: http://www.ted.com/speakers/mitch_resnick
  • Resnick, M., & Silverman, B. (2005). Some reflections on designing construction kits for kids. Proceedings of Interaction Design and Children Conference, Boulder, CO.
  • Rogers, C., & Portsmore, M. (2004). Bringing engineering to elementary school. Journal of STEM Education, 5(3-4), 17–28.
  • Ryan, R., & Deci, E. (2000). Intrinsic and extrinsic motivations: Classic definitions and new directions. Contemporary Educational Psychology, 25, 54–67.
  • Schunn, C. D., Abramovich, S., & Higashi, R. (2012, August) Are Badges Useful in Education?: It Depends Upon the Type of Badge and Type of Learner. Retrieved from http://download.springer.com/static/pdf/503/art%253A10.1007%252Fs11423-013-9289-2.pdf?auth66=1364398853_eaf4db44b712278a1380306b6d651ce6&ext=.pdf
  • State Workforce Investment Board. (2010). Strategic Plan for Workforce Development in Mississippi for 2007-2009. Retrieved from http://www.swib.ms.gov/StrategicPlan/
  • Symonds, W. C., Schwartz, R. B., & Ferguson, R. F. (2011). Pathways to prosperity: Meeting the challenge of preparing young Americans for the 21st Century. Cambridge, MA: Harvard Graduate School of Education, Pathways to Prosperity Project. Retrieved from http://www.gse.harvard.edu/news_events/features/2011/Pathways_to_Prosperity_Feb2011.pdf
  • United States Department of Agriculture. (2003). Research, Education, & Economics Information System, Reports and Documents. Retrieved from United States Department of Agriculture. (2007). Strategic plan. Washington, DC: Author. http://www.reeis.usda.gov/portal/page?_pageid=193,899783&_dad=portal&_schema=PORTAL&smi_id=31
  • Voyles, M., Fossum, M., T., & Haller, S., (2008). Teachers respond functionally to student gender differences in a technology course. Journal of Research in Science Teaching, 45(3), 322–345.
  • Weiss, F. L. (2001). Outcomes and impacts of Girls Incorporated Programs. New York, NY: Girls Incorporated.

Robotics

  • Alimisis, D., Moro, M., Arlegui, J., Pina, S., Frangou, S., & Papanikolaou, K. (2007). Robotics & constructivism in education: The Terecop Project. Proceedings of the 11th European Logo Conference, Bratislava, Slovakia, Retrieved from: http://users.sch.gr/adamopou/docs/syn_eurologo2007_alimisis.pdf
  • Barker, B. S., & Ansorge, A. (2007). Robotics as means to increase achievement scores in an informal learning environment. Journal of Research on Technology in Education, 39(3), 229-243. Retrieved from http://files.eric.ed.gov/fulltext/EJ768878.pdf
  • Barak, M. (2004). Implications of computer-based projects in electronics on fostering independent learning, creativity and teamwork. International Society of the Learning Sciences. Proceedings of the 6th International Conference on Learning Sciences, 66-72. Retrieved from http://delivery.acm.org/10.1145/1150000/1149132/p66-barak.pdf?ip=130.18.149.177&acc=ACTIVE%20SERVICE&CFID=187625993&CFTOKEN=82362157&__acm__=1362615055_9086f24d4199bb447c70ca5b4 3a574ad
  • Barak, M., & Zadok, Y. (2009). Robotics projects and learning concepts in science, technology and problem solving. International Journal of Technology Deign Education, 19(3), 289–307. Retrieved from http://download.springer.com/static/pdf/603/art%253A10.1007%252Fs10798-007-9043-3.pdf?auth66=1361045345_4a35739abc9249111a06eed544c7a235&ext=.pdf
  • Beals, L., & Bers, M. (2006). Robotic technologies: When parents put their learning ahead of their child’s. Journal of Interactive Learning Research, 17(4), 341–366. Retrieved from http://ase.tufts.edu/devtech/publications/beals-bers-jilr.pdf
  • Beer, R., Chiel, H., & Drushel, R. (1999). Using autonomous robotics to teach science and engineering. Communications of the ACM, 42(6), 85–92. doi: 10.1145/303849.303866
  • Bers, M. (2007). Project InterActions: A Multigenerational robotic learning environment. Journal of Science Educational Technology, 16(6), 537–552. doi: 10.2307/40188626
  • Bers, M. (2008). Blocks, robots and computers: Learning about technology in early childhood. New York, NY: Teacher’s College Press. 195
  • Bers, M., Ponte, I., Juelich, K., Viera, A., & Schenker, J. (2002). Teachers as designers: integrating robotics in early child education education. Information Technology in Childhood Education Annual, 2002(1), 123-145.
  • Bers, M., & Portsmore, M. (2005). Teaching partnerships: Early childhood and engineering students teaching math and science through robotics. Journal of Science Education and Technology, 14(1), 59-73.
  • Bers, M. & Urrea, C. (2000). Technological Prayers: Parents and Children Working with Robotics and Values. In A. Druin & J. Hendler, (Eds.), Robots for kids: Exploring new technologies for learning experiences, (pp. 193-216). Los Altos, CA: Morgan Kauffman.
  • Brandt, B., Collver, M., & Kasarda, M. (2008, April). Motivating students with robotics. The Science Teacher, 75(4), 44–49. Retrieved from ERIC database. (EJ789938)
  • Bruckman, A., Biggers, M., Ericson, B., McKlin, T., Dimond, J., DiSalvo, B., Hewner, M., Ni, L., & Yardi, S. (2009). Georgia computes!: Improving the computing 196 education pipeline. Symposium conducted at the Fourtieth Special Interest Group on Computer Science Education Technical Symposium on Computer Science Education, Chattanooga, TN .
  • Chambers, J., Carbonaro, M., & Rex, M., (2007). Scaffolding knowledge construction through robotic technology: A middle school case study. Electronic Journal for the Integration of Technology in Education, 6, 55-70. Retrieved from http://ejite.isu.edu/Volume6/Chambers.pdf
  • Cravotta, R. (2007). Robots on the march: Robotics platforms and development tools. EDN Network. Retrieved from http://www.edn.com/article/472626-Robots_on_the_march_Robotics_platforms_and_development_tools.php
  • Druin, A., & Hendler, J. (2000). Robots for kids: Exploring new technologies for learning. Los Altos, CA: Morgan Kauffman.
  • Fagin, B., & Merkle, L. (2003). Measuring the effectiveness of robots in teaching computer science. Proceedings of the 34th Special Interest Group on Computer Science Education. Technical Symposium on Computer Science Education, Reno, NV, 307–311. Forum focus: Can America globalize itself? (2006, Spring). Business-Higher Education Forum, 5-10 Retrieved from http://www.bhef.com/publications/documents/forumfocus_s06.pdf
  • Goldman, R., Eguchi, A., & Sklar, E. (2004). Using educational robotics to engage inner city students with technology. Proceedings of the 6th International Conference on Learning Sciences, Santa Monica, CA, 214–221. Retrieved from: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.83.9302
  • Groome, M., & Rodriguez, L. M. (2014). How to build a robot collaborating to strengthen STEM programming in a citywide system. After School Matters(19), 1-9. Retrieved from http://files.eric.ed.gov/fulltext/EJ1022073.pdf
  • Hasker, R. (2005). An introductory programming environment for LEGO® Mindstorms Robots. Proceedings of Midwest Instruction and Computing Symposium 38th MICS. Eau Claire, WI. Retrieved from http://www.micsymposium.org/mics_2005/papers/paper87.pdf
  • Jaibur, K., Sirulnik, D., & McMeeking, D. (2005). Robotic systems: A guide to understanding the robots around us. Retrieved from http://coweb.cc.gatech.edu/ice-gt/uploads/353/concept_guide_robotics.pdf
  • Janka, P. (2008). Using a programmable toy at a preschool age: Why and how? Proceedings of SIMPAR 2008, International Conference on Simulation, Modeling, and Programming for Autonomous Robots. Venice, Italy. Retrieved from http://www.monicareggiani.net/simpar2008/TeachingWithRobotics/pekarova.pdf
  • Johnson, J. (2003). Children, robotics, and education. Artificial Life Robotics, 7(1-2), pp 16-21. Retrieved from http://link.springer.com/article/10.1007%2FBF02480880?LI=true#page-1
  • Jonassen, D. H. (2006). Modeling with technology: Mindtools for conceptual change. Columbus, OH: Merill/Prentice Hall.
  • Karp, T., Gale, R., Lowe, L. A., Medina, V., Beutlich, E. (2010). Generation NXT: building young engineers with LEGOs®. Institute of Electrical and Electronics Engineers Journal, 53(1), 80-87. 202
  • Learning Point Associates, North Central Regional Educational Laboratory. (2005). Critical issue: Using technology to improve student achievement. Retrieved from ERIC database. (ED489521). 203
  • Lund, H., & Pagliarini, L. (2002). Edutainment and robotic games for children. Proceedings of 2nd IFAC Conference on Mechatronic Systems. Elsevier. Berkeley, CA. Retrived from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.111
  • Lundy, A. (2007). The effect of the FIRST Robotics Competition on high school students’ attitudes toward science. Paper presented 2007 FIRST Robotics Conference. Atlanta, GA. Retrieved from http://first.wpi.edu/Workshops/2007CON.html
  • Mataric, M., Koenig, N., & Feil-Seifer, D. (2007). Materials for enabling hands-on robotics and STEM education. Proceedings of American Association for Artificial Intelligence Spring Symposium on Robots and Robot Venues: Resources for AI Education, Palo Alto, CA. Retrieved from http://www.cs.hmc.edu/roboteducation/204
  • Matson, E., & DeLoach, S. (2004). Using robots to increase interest of technical disciplines in rural and underserved schools. American Society for Engineering Education Annual Conference and Exposition, Salt Lake City, Utah, June 20-23, 2004.
  • Mindell, D. (2000). LEGO® Mindstorms: The structure of an engineering evolution. Epistemology and Learning Group at the MIT Media Laboratory. Retrieved from http://web.mit.edu/6.933/www/Fall2000/LEGOMindstorms.pdf
  • Moorman, K., & Parks, D. (2010). Using robots undergraduate AI courses at small universities. Proceedings of the Twenty-Third International Florida Artificial Intelligence Research Society Conference, Daytona Beach, FL.
  • Mosley, P., & Doswell, J. (2008). The virtual instructor intervention: A case in LEGO® robotics. The International Journal of Virtual Reality, 7(1), 15–20.
  • Murray, J., & Bartelmay, K. (2005). Inventors in the making. Science and Children, 42(4) 40–44.
  • Norton, S., McRobbie, C., & Ginns, I. (2007). Problem solving in a middle school robotics design classroom. Research in Science Education, 37(3), 261–277.
  • Papert, S. (1993). The children’s machine: Rethinking school in the age of the computer. New York, NY: BasicBooks.
  • Petre, M., & Price, B. (2004). Using robotics to motivate “Back Door” learning. Journal of Educational and Informational Technologies, 9(2), 147–158
  • Robinson, M. (2005). Robotics-driven activities: Can they improve middle school science learning? Bulletin of Science, Technology & Society, 25(1), 73–84.
  • Ruiz-del-Solar, J., & Aviles, R. (2004). Robotics courses for children as a motivation tool: The Chilean experience. IEEE Transactions on Education, 47(4), 474–480.
  • Rusk, N., Resnick, N., Berg, R., & Pezalla-Granlund, M. (2008). New pathways into robotics: Strategies for broadening participation. Journal of Science Education Technology, 17, 59-69. 208
  • Sklar, E., Eguchi, A., & Johnson, J. (2003). RoboCupJunior: Learning with educational robots. Lecture Notes in Computer Science, 24(2), 43–46.
  • Turkle, S. (1995). Life on the Screen. New York: Simon and Schuster.
  • Turner, S., & Hill, G. (2008). Robotics within the teaching of problem-solving. ITALICS, 7(1), 108–119.
  • Verner, I. M. (1998). The Survey of RoboCup ’98: Who, How and Why. In Robot-Cup-98: Robot Soccer World Cup II. Lecture Notes in Artifical Intelligence, 1604, New York: Springer Verlag.
  • Virnes, M., Sutinen, E., & Kärnä-Lin, E. (2008), How children’s individual needs challenge the design of educational robotics. Proceedings of the 7th International Conference on Interaction Design and Children. Chicago, IL.

4-H and STEM

TED Talks About Youth and Programming